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Introduction
• Water utilities must ensure potable water infrastructure 

are sustainable, robust and resilient to long- and short-
term challenges

• Long-term challenges include
– Climate change
– Population shifts
– Aging infrastructure

• Addressed through 
infrastructure design

http://trenchlessonline.com/new-south-carolina-water-main-provides-for-future-needs/2



Introduction
• Water utilities must ensure potable water infrastructure 

are sustainable, robust and resilient to long- and short-
term challenges

• Short-term challenges include
– Energy management
– Water quality maintenance
– Response to (un)intentional 

intrusion events
– Leak detection

• Addressed through real-time 
monitoring and decision 
support

3
https://www.strand.com/services/water-supply/general-engineering/



Scale of Interest
• ... in demands 

somewhere between ...
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https://www.123rf.com

Total System Demands

Single User Demands



Real-Time Modeling Needs ...
• Network models that accurately represent the 

system infrastructure
• Solvers to simulate the hydraulics and water 

quality
• Ability to measure and forecast consumer 

demands 
– Drive the underlying hydraulics and water quality 

dynamics

• BUT ... consumer demands are usually not 
observed in real-time
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Real-Time Modeling: 
Available Data

• Includes ...
– System-wide (total) demands
– Monthly/quarterly billing data
– Limited, spatially distributed measurements of 

flow rates, pressures, tank levels at hourly (or 
shorter) time intervals

– Demographic data associated with lot types, 
socio-economic information, etc

• How do we use this data to estimate and 
forecast demands?
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Current Solution
• Developed a top-down 

approach to:
– Estimate spatially distributed 

demands, and parameters of 
demand model

– Using limited hydraulic 
observations

• Outcome is an algorithm to 
estimate and forecast:
– Consumptive demands,
– System states, and
– Uncertainty characteristics
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• Developed the first approach to integrate
– A vectorized time-series model for demands with
– A hydraulic solver (e.g., EPANET)

• Formulated as a Dynamic Bayesian Network

Model 
Parameters Demands

Composite Demand-Hydraulic 
Model

Hydraulic 
States

Demand	
sub-model

Hydraulic	
sub-model

Vectorized	
Time	Series	
Model

EPANET

8
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Demand Sub-Model:
Vectorized Time Series Model

• Capable of implementing any ARIMA model structure
• Focused on auto-regressive (AR) single- or double-

seasonal models

Challenge: How	do	we	estimate	the	
unobserved	demands	and	VARIMA	model
parameters	using	limited	observed	hydraulics?
9
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Parameter/Demand Estimation
• Implemented an Expectation-Maximization (E-M) 

algorithm
– An iterative approach used to estimate latent 

variables using observed data
Expectation Step to estimate demands

Maximization Step to estimate 
time series model parameters

Dempster et al, 1997; Pasula et al, 1999
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Expectation Step

Water demand estimates
conditioned on the time 
series model and 
hydraulic observations

Dempster et al, 1997; Pasula et al, 1999
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• E-step:  estimates water demands using a 
Markov chain Monte Carlo algorithm 

Likelihood
PriorPosterior



Maximization Step
• M-step:  non-linear parameter estimation for the 

time series model by minimizing the mean 
squared error (equivalent to maximum likelihood 
estimates)
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Time series 
parameters updated

using estimated demands

Dempster et al, 1997; Pasula et al, 1999



Initial guesses of time 
series parameters

Graphical Concept
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Real-World Network Study
• Applied the composite demand-hydraulic 

model to a real-world case study to
– Evaluate the overall performance
– Identify challenges associated with a real-

world application

• Intent was to identify additional needs to 
improve the integrated demand-hydraulic 
modeling approach
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Case Study
• Real-world system with

– Main treatment plant (Brandon and 
Lithia South) 56 – 170 MLD [15- 45 
MGD]

– Secondary treatment plant (Miller) 
16 MLD [4.3 MGD]

– Two tanks
– Six flow measurements
– Nine pressure measurements
– Network has ~60,000 service 

connections represented by 
~12,000 nodes

• Clustering
– To reduce parameterization 

network was clustered into four 
regions based on flow path 
downstream from flow meters 
[modified from Qin and Boccelli, 
2016 (under review)]
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Case Study
• Time Series Model

– Preliminary model used 
two auto-regressive and 
one seasonal term (24-hr)

– Same model structure, not 
parameters, applied to 
each cluster

• Performed demand 
estimation with 168-hours

• Forecasted demands for an 
additional 24 hours
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Results:  Demand Estimates
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Results:  Observed and 
Estimated Flows
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Results:  1-hr Ahead Forecasts
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Results:  24-hr Forecasts
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Lessons Learned:  Missing Data
• One significant issue with SCADA data is incorrect 

and missing data
• Need approaches to identify and replace (or ignore) 

missing data when occurring

21

Have tested using 
time series models
to represent observed
flow data and filling in
missing data 



Lessons Learned: 
Clustering and Measurements

• The development of the clusters and/or 
location of the monitoring stations can effect 
the demand estimation process

• Observations [not shown] have demonstrated 
that for the same number of clusters, but 
using different approaches to cluster the 
network, can result in poor demand estimates
– i.e., zero or negative demands
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Lessons Learned: 
Physical Inacurracies

• Unknown/unobserved differences between 
reality and model representation
– In particular, for this case study, there were 

significant challenges representing tank 
dynamics

• Can adequately represent flows out of the tank 
through pumps, but typically overestimated the fill 
flow rate by 3 – 4 times the observed flow

• Model was missing a pressure sustaining valve 
that physically existed
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Summary and Conclusions
• This first real application of the composite 

demand-hydraulic model provided:
– Good demand estimates and representation for 

observed hydraulics
– Demand estimates routinely within the 1-hr ahead 

forecasting values
– Long-term forecasting results in relatively large 

uncertainties
– Implementation of a real-time model also requires 

significant investment into ensuring accurate 
representation of the physical system
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Next/Future Steps
• Demand Estimation

– Lognormal representation of the demands
– Double seasonal times series models and additional model 

identification
• Demand Forecasting

– Identifying model structures to improve forecasting not just 
estimation

– Efficient approaches for forecasting demands and 
hydraulic states

• Real System Assessment
– Work more closely with utility on physical representation
– Comparison of performance with available tracer data to 

assess transport improvements
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Scale of Interest

• Interested in 
demands between ...

28
https://www.123rf.com



Demand Modeling:
Bottom-Up Approach

• Stochastic modeling of demands at individual 
service connections

– Includes arrival rates, and 
distributions of intensity and 
duration of  individual water 
usage

– Blokker et al used 
demographic information to 
estimate demands

– Data intensive, challenging 
to keep up the data set

In
te
ns
ity

Time

Li and Buchberger, 2006; Blokker et al, 2010
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Demand Modeling:
Top-Down Approach

• Deterministic modeling with temporal/spatial 
demands representing an average/extreme 
demand scenario

Tank Level
Flow Rate
Pressure

– Typically performed as 
“calibration” to match 
observations

– Real-time approaches have 
used extended Kalman 
filters to estimate the 
demands

– Capture spatial distribution, 
but not temporal 
relationships

– No predictive ability

Shang et al, 2006; Kang and Lansey,  2010
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Demand Modeling:
Temporal Correlations

• Time series modeling 
applied to observed 
system-wide (total) 
demands
– No spatial distribution
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Results:  Scatter Plots 
Demands
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Results:  Scatter Plots Flows
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Real-Time Modeling
• Requires real-time demand estimates and 

forecasts

• Challenge:  How to estimate and forecast 
demands using:
– System-wide (total) demands
– Monthly/quarterly billing data (i.e., base demands)
– Spatially limited measurements of flow rates, 

pressures, tank levels at hourly (or shorter) time 
intervals

– Potentially inaccurate model representations of the 
physical network
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Parameter/Demand Estimation
• Implemented an Expectation-Maximization (E-M) 

algorithm 

• The E-M algorithm is used to 
– Estimate latent variables

• demands and time series parameters

– Using observed data
• i.e., flows, pressures

35



Parameter/Demand Estimation
• Implemented an Expectation-Maximization (E-M) 

algorithm
– An iterative approach used to estimate latent 

variables using observed data

Water demand estimates
conditioned on the time 
series model and 
observations

Time series 
parameters updated using 

estimated demands

Dempster et al, 1997; Pasula et al, 1999
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Expectation (E)-step
• Estimate the posterior distribution of demands 

using likelihood function using
– Time series model as a prior, and 
– Observed data

• Use a Markov chain Monte Carlo estimation 
approach to estimate demands

Known with hydraulic
sub-model

Known with demand
sub-model
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Maximization (M)-step
• Given the estimated demands

– Estimate the parameters of the VARIMA demand 
model using mean squared error (equivalent to 
maximum likelihood estimates)

Using likelihood principle 

Independent of    ; 
estimated in E-step

38



E-M Algorithm

Water demand estimates
conditioned on the time 
series model and 
observations

Time series 
parameters updated using 

estimated demands

Dempster et al, 1997; Pasula et al, 1999
39

• E-step:  estimates water demands using a Markov chain 
Monte Carlo approach with a
– Time series model as a prior and
– Likelihood of observed data 

• M-step:  estimates the parameters of the time series model by 
minimizing the mean squared error (equivalent to maximum 
likelihood estimates)

Likelihood
PriorPosterior



Demand Sub-Model:
Vectorized Time Series Model

• Example: single-seasonal model

Challenge: How	do	we	estimate	the	
unobserved	demands	and	VARIMA	model
parameters	using	limited	observed	hydraulics?

40



Real-Time Modeling
• Available information for demand estimation

– System-wide (total) demands
– Monthly/quarterly billing data
– Demographic data associated with lot types, 

socio-economic information, etc.
– Spatially limited measurements of flow rates, 

pressures, tank levels at hourly (or shorter) time 
intervals

• How do we use this data to estimate and 
forecast demands?

41



Outline
• Background
• Motivation
• A statistical demand-hydraulic model
• The Expectation-Maximization (E-M) algorithm
• Case study
• Results and discussions
• Future work
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Introduction
• Water utilities must ensure potable water 

infrastructure are sustainable, robust and resilient to 
long- and short-term challenges

• Long-term challenges 
include
– Climate change
– Population shifts
– Aging infrastructure

• Addressed through 
infrastructure design

http://trenchlessonline.com/new-south-carolina-water-main-provides-for-future-needs/
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Hydraulic model: framework
Type Data Data Source/Measurements

Network Network connectivity, pipe 
diameters/roughness, tank 
geometries, etc. (Static during EPS)

GIS; Asset Management 
System (AMS)

“Controls” On/off statuses of pumps/control 
valves, speed settings of VFPs, tank 
levels, etc.

Control rules or results 
from previous time steps 
(in EPS), historic actions 
are available in SCADA DB

Demands Short-term water demands for 
individual customers

Automatic Meter Reading 
(AMR) system; monthly 
water bills; empirical 
patterns

Hydraulics Nodal pressures, pipe/pump flows

44

Inputs

Outputs

?

SCADA system (however, 
typically only partial 
coverage for a network)



The models of water demands

Improvements: explicitly model the two characteristics : 
(1) periodicity and (2) short-term (auto-) correlations

45

Traditional approach: 
demand group-demand pattern

…… …



Benefits of using time series models

• Using seasonal (periodic) time 
series model is expected to 
improve the forecasts of system-
wide demands (Chen and 
Boccelli, 2013)

• Forecasts are updated as real-time 
observations are received

• Varied forecasting horizons
• Quantification of uncertainties

46

Can we use (vector) time 
series model for spatially 
distributed demands?



Motivation

• We would like to use SCADA data to estimate the 
parameters of the (multivariate) time series model  
– Extension to the methodology for univariate water demands

• The composite model will have the capabilities provided 
by the time series model
– Better online forecasting of demands and hydraulics
– Uncertainty quantification

47

Time series model EPANET
Water demands



The demand-hydraulic model
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Demand model:

Hydraulic model:

Vector of water 
demands at t

Linear parameter 
matrices of the time 
series model

White noise Covariance 
matrix

Vector of monitored 
hydraulic variables Network data

Control data
Measurement errors

Our objective is to estimate water demands and 
model parameters given hydraulic observations

?
(n*n) matrices



The EM algorithm (Pasula et.al., 1999)

• Expectation-Maximization
• Iteratively update point estimates of parameters and distribution 

estimates of latent variables (demands)
• E-step: Markov chain Monte Carlo

49

Water demands 
conditioned on the 
parameters and 
observations

Maximum likelihood 
estimates as new 
parameters



Concept: E-M algorithm in demand estimation
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Concept: E-M algorithm in demand estimation

…

Time

…
SCADA 
Observations

Next time for 
parameter 
(re-)estimation

t -167 t 

Next Window of
Observations

t+168 t+1 

t -167 t 

New Demand 
estimates …

Time

t+168 t+1 

Demand Forecasts with the 
demand model established



Demand estimates

• Demand estimates 
showing good 
match for small-to-
medium values

• Underestimated the 
high demands for 
Junc. 11
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Temporal correlations of demand estimates

• Structure of autocorrelations similar to previous results on univariate 
water demands

53

• Junction 11 water demands and autocorrelations  



Spatial correlations of demand estimates

• Junction 12
• Not correlated
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Spatial correlations of demand estimates

• Junction 11 and 21
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Junction 11 12 13 21 22 23 31
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Spatial correlations of demand estimates

• Junction 13, 22, and 23
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Spatial correlations of demand estimates

• Combinational results of 
intrinsic uncertainty of 
demands and the layout of 
SCADA sensors
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Conclusions
• The EM algorithm is effective in estimating the 

parameters and demands in a proof-of-concept study 
case

• Spatial and temporal correlations of water demands can 
be quantified

• Lots of computational resources consumed
– 60-80 minutes to assimilate 1-week worth of SCADA data
– Applicable for small network
– Large network may need simplification/consumer grouping
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Future work
• Use the demand model with estimated parameters for 

short-term forecasting
– Prediction of demands and hydraulics

• Investigate the impact of different layouts of SCADA 
sensors to the uncertainty of demand estimates

• Potential new method of customer grouping based on 
spatial correlations

• EM algorithm may be applicable in other problems with 
the “time series model + non-linear model” structure
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Thanks!
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Flowchart 
of the EM 
algorithm
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