

Household Water and Energy Use the Nexus that Connects Us

Jay Lund Alvar Esriva-Bou

Center for Watershed Sciences University of California, Davis

CaliforniaWaterBlog.com

Outline

- Perspectives on Water/Energy Analysis
- Purposes of Analysis
- Approaches to Analysis
- Alvar Escriva-Bou's modeling results
- Hard parts/Opportunities/Conclusions

Water/Energy Analysis Perspectives

Water connects us all with each other and the world

- Household Perspective
- Water and Energy Utility perspectives
- Society perspective local, regional, national
- Global perspective

Each perspective has different purposes

Purposes of Analysis -Households

- Happiness
- Minimize cost
- Reduce energy and water use
- Drought management

Households don't pay for analysis.

Purposes of Analysis -Water & Energy Utilities

- Minimize cost
- Demand management peak energy/water use
- Reduce energy and water use
- Drought management
- Other extreme events outages, etc.
- Use data from smart meters, network sensors
- Utilities pay for analysis (but not enough). 5

Purposes of Analysis -Society

- Minimize cost
- Reduce energy and water use
- GHG emission reduction
- Drought management
- Utility and environmental regulation
- Societies pay little for analysis rarely.

Approaches to Analysis -Empirical

- Big and medium data Econometrics, regression, machine learning – "top down"
- Advantages Real data & experiences, immediate applicability, common methods
- Disadvantages Conditions of calibration data, future changes, causality unclear
- Examples Price elasticity of demand studies since Gottlieb 1963; gobs of local & meta-studies

Approaches to Analysis -Mechanistic

- Build demands from end-uses with behavioral assumptions, often optimization – "bottom up"
- Advantages Mechanistic, detailed causal understanding of causes of demand and changes
- Disadvantages Some end uses lack data; household motivations not completely clear; never completely mechanistic

8

 Examples – Rosenberg and Abdallah (2014); Escriva-Bou (2015); Lund (1995)

Alvar Escriva-Bou's results +

Escriva-Bou, A., J. R. Lund, and M. Pulido-Velazquez (2015), Modeling residential water and related energy, carbon footprint and costs in California, *Environ Sci Policy*, *50*(0), 270-281.

Escriva-Bou, A., J.R. Lund, M. Pulido-Velazquez, "Optimal residential water conservation strategies considering embedded energy in California," *Water Resources Research*, Volume 51, Issue 6, pages 4482–4498, June 2015.

Following...

Rosenberg, D.E., T. Tarawneh, R. Abdel-Khaleq, and J.R. Lund, "Modeling Integrated Water-User Decisions in Intermittent Supply Systems," *Water Resources Research*, Vol. 43, No. 7, July 2007.

1) Residential water and related energy, carbon footprint and costs in California*

- -What energy and GHG emissions come from residential water end-uses?
- Does spatial variability and heterogeneity affect water and energy use?
- How do water and energy rate structures affect costs to households?

*Escriva-Bou, A., J. R. Lund, and M. Pulido-Velazquez (2015), Modeling residential water and related energy, carbon footprint and costs in California, *Environ Sci Policy*, *50*(0), 270-281.

Water End-Use Model

Water End-Use Models

13

Water-Related Energy End-Use Model

- From End-Water Uses → Hot water, using hot water prob. distributions per end-use (EBMUD, 2002).
- Energy Calculation WHAM (Lutz et al., 1999):

$$Q_{in} = \frac{vol \cdot den \cdot Cp \cdot (T_{tank} - T_{in})}{\eta_{re}} \cdot \left(1 - \frac{UA \cdot (T_{tank} - T_{amb})}{P_{on}}\right)$$
$$+ 24 \cdot UA \cdot (T_{tank} - T_{amb})$$
$$Household$$
$$characteristics$$
$$Users' behaviors$$
$$External conditions$$

California overall results per household

80% of total water-related energy

2% total per capita GHG emissions

Household water and energy per city

Household water and energy costs per city

Heterogeneity in consumption

9

Results show potential for joint management

Policy implications from mechanistic modeling

- Faucet + shower ≈ 80% water-related energy
- Air and inlet temperatures affect energy use
- "Willingness to adopt" conservation depends on:
 - Current consumption
 - Household stock
 - Water and energy prices
- Targeting
 - More than doubles cost-effectiveness of rebates

2) Least-cost water conservation mix for California households considering energy

- –What is the least-cost water conservation mix for households, given water and energy prices?
- Does including energy affect willingness to adopt conservation actions?
- -How significant are own- and cross-price elasticities?

*Escriva-Bou, A., J. R. Lund, and M. Pulido-Velazquez (2015), Optimal residential water conservation strategies considering related energy in California, *Water Resources Research*.

The economics behind the model: Complementarity of demand

Household optimization process

- Each household has conservation options
 - Long-term: Retrofits
 - Short-term: Behavioral
- Each action has
 - Cost
 - » Annualized costs for retrofits
 - » "Hassle costs" for behavioral changes
 - Effectiveness
 - » Water
 - » Energy
 - » Greenhouse gas emissions

Conservation Actions: Savings and Technological Shifts

25

Optimization Model

Subject to:

- Decision variables are binary
- Savings are less than initial use (upper bound) and resource availability
- Mutually exclusive actions
- Interdependence among actions

Water savings for long-term actions

Energy savings for water-related actions

Increased conservation when energy is included

- Adoption rate:
 - Retrofit shower: +7.9%
 - Retrofit clothes washer: +1.7%
 - Reduce shower length: +3.2%
 - •
- Increased savings:
 - Indoor water savings: +24%
 - Energy savings: +30%
 - GHG savings: +53%

Demand functions and elasticities

Policy implications from Mechanistic Modeling

- Including water-related energy should increase water conservation (and energy and GHG savings).
- Outdoor and toilet save most water; shower, faucet and clothes washer better save energy.
- Behavioral actions: Much to do!

3) Coupling hourly end-use and utility-scale water-energy models

- How much energy and GHG emissions are embedded in urban water cycle?
- What are effects of water conservation on water and energy utilities?
- Are there synergies for water and energy utilities working together?

EBMUD Example

Pardee and Camanche Reservoirs

WTP

Total Supply: 17604 MG/year (out of 64868 MG/year) Leland Pop. ≈ 130,000 6,391 MG/year Elevation: 150 feet – 45 m

PP

Danville Pop. \approx 75,000 3661 MG/year Elevation: 350 feet – 107 m

PP

San Ramon Pop. ≈ 150,000 7553 MG/year Elevation: 550 feet – 168 m

34

PP

Assembling the model

Water utility

Water users

Shifting Water Use Peaks to Off-Peak Energy Hours Has Economic Benefits

Results

- Optimal water conservation
 - Water use: 6% reduction
 - Energy use: 5% reduction
 - GHG emissions: 5% reduction
 - Energy cost for water utility: 4.5% reduction

Results

- Demand-response (peak shaving): Outdoor, clothes washer and dishwasher use are moved to off-peak hours.
 - Water use: Equal
 - Energy use: Equal
 - GHG emissions: Needs more discussion
 - Energy cost for water utility: 3% reduction
 - Energy cost for energy utility: 4% reduction

Policy implications

- Saving water reduces some GHG emissions.
- Synergies exist for water and energy utilities working together.
- Temporal water demand management can be very effective to reduce energy peaks.

Hard Parts Left to Do

- Outdoor water use and WTP estimation
- Monte Carlo modeling for outdoor use
- Energy Hot water heater efficiency
- Getting data organized starting to happen
- Testing models systematically and reconciling with empirical modeling

Effects of Climate and Land Use

- Larger lawns & warmer, drier climate increase landscape water use
- Landscape type will also affect!

0.30 0.20 0.10 0.00 Coastal Inner Coastal Central Desert

Hanak and Davis, 2009

- Smart meter data will drown us in data
- Commercialize mechanistic modeling
- Integrate with other supply and demand management activities at social, utility, and household scales
- Include more risk and financial analysis

Conclusions

- Nexus modeling is harder, but more interesting and useful than just yacking about X-Y-Z nexus
- Mechanistic modeling, better organizes problem with more flexibility and insights than empirical modeling alone
- Empirical and Mechanistic modeling should work better together
- Future looks bright for research and applications

Water and People in California

California depends on an engineered statewide network

Effects of Climate and Land Use

 Average Water Requirements of Turf Grass for Small Single-Family Lots

Region	Yard	Weighted	Annual Water	Increase over					
	Size	Average ET0	Requirements	Region with					
	(sf)	(inches/year)	(af)	Lowest Need					
San Francisco Bay Area	6,308	45.9	0.19	—					
South Coast	7,623	49.8	0.25	31%					
San Joaquin Basin	7,060	54.4	0.26	33%					
Tulare Basin	7,711	56.2	0.29	50%					
Sac. Metro region	8,129	56.8	0.31	59%					
Inland Empire	8,858	56.2	0.33	72%					
Usual and David 2006 17									

Hanak and Davis, 2006 47

AU and CA urban water use

 Urban CA could reduce use by 30-50+% with AU use rates.

Location	Residential Use, gpcd				
Portland, OR	58				
Albuquerque, NM	74				
Tucson, AZ	97				
Denver, CO	104				
California	104				
San Francisco	46				
Oakland/East Bay	73-83				
San Diego	73-92				
San Jose	81-85				
Los Angeles	91-99				
Sacramento	113-120				
Australia	54				
Melbourne	40				
Brisbane	45				
Canberra	50				
Sydney	55				
Perth	75				
	Cahill and Lund, 2009				

Biggest difference in AU and CA use is usually outdoors

	California				Australia						
	East Bay Area		California		Perth		Melbourne		Gold Coast		
	Use,	% of	Use,	% of	Use,	% of	Use,	% of			
End Use	gpcd	total	gpcd	total	gpcd	total	gpcd	total	Use, gpcd	% of total	
Toilet	20	21%	13	10%	9	9%	8	13%	5	13%	
Shower/Bath	15	16%	13	10%	14	14%	14	24%	15	37%	
Washing Machine	14	15%	10	8%	11	11%	11	19%	8	19%	
Faucets	10	11%	11	9%	7	7%	7	12%	7	17%	
Leaks	5	5%	10	8%	2	2%	4	6%	1/2	1%	
Other	1	1%	2	1%	1	1%	1	1%	1/2	1%	
Outdoor	30	32%	67	53%	55	56%	15	25%	5	12%	
Total	95	100%	126	100%	99	100%	60	100%	42	100%	

Cahill and Lund, 2006

Melbourne 25" Queensland 48" Perth 29"