A Framework for Real-Time Spatially Distributed Demand Estimation and Forecasting

Paulo José Oliveira^a, S. M. Masud Rana^a, Tian Qin^a, Hyoungmin Woo^a, Jinduan Chen^b and <u>Dominic L. Boccelli</u>^a

> ^aUniversity of Cincinnati, Cincinnati OH, USA ^bIDModeling, Arcadia, CA, USA

Introduction

- Water utilities must ensure potable water infrastructure are sustainable, robust and resilient to long- and shortterm challenges
- Long-term challenges include
 - Climate change
 - Population shifts
 - Aging infrastructure
- Addressed through
 infrastructure design

http://trenchlessonline.com/new-south-carolina-water-main-provides-for-future-needs/

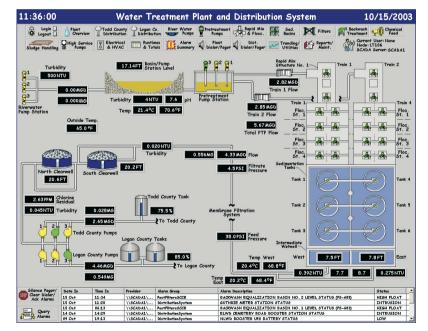
Introduction

- Water utilities must ensure potable water infrastructure are sustainable, robust and resilient to long- and shortterm challenges
- Short-term challenges include
 - Energy management
 - Water quality maintenance
 - Response to (un)intentional intrusion events
 - Leak detection

support

3

Addressed through real-time monitoring and decision

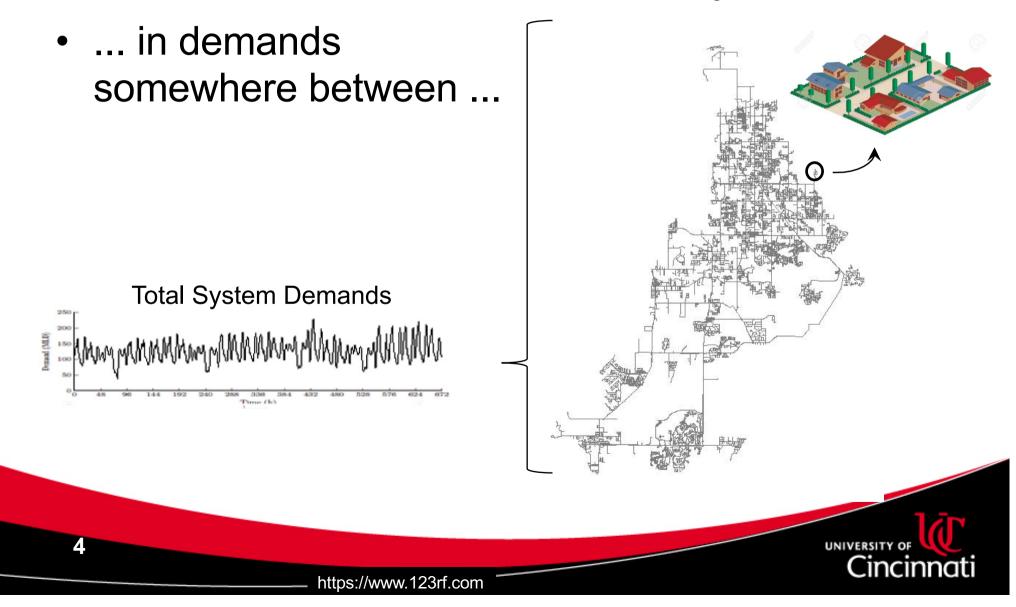


UNIVERSITY O

https://www.strand.com/services/water-supply/general-engineering

Scale of Interest

Single User Demands



Real-Time Modeling Needs ...

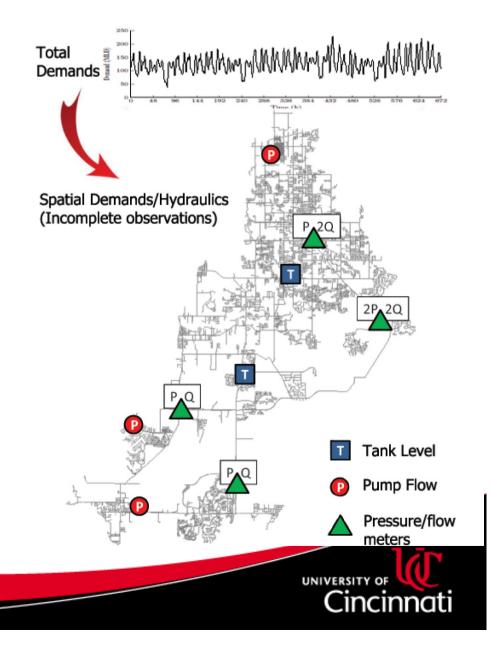
- Network models that accurately represent the system infrastructure
- Solvers to simulate the hydraulics and water quality
- Ability to measure and forecast consumer demands
 - Drive the underlying hydraulics and water quality dynamics
- BUT ... consumer demands are usually not observed in real-time

Real-Time Modeling: Available Data

- Includes ...
 - System-wide (total) demands
 - Monthly/quarterly billing data
 - Limited, spatially distributed measurements of flow rates, pressures, tank levels at hourly (or shorter) time intervals
 - Demographic data associated with lot types, socio-economic information, etc
- How do we use this data to estimate and forecast demands?

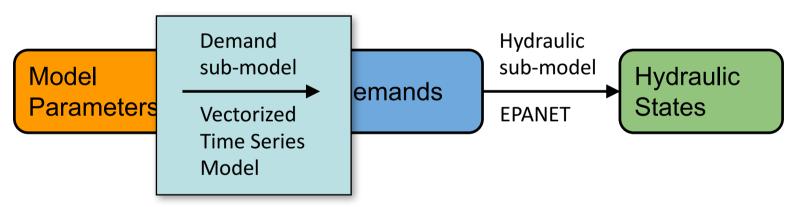
Current Solution

- Developed a top-down approach to:
 - Estimate spatially distributed demands, and parameters of demand model
 - Using limited hydraulic observations
- Outcome is an algorithm to estimate and forecast:
 - Consumptive demands,
 - System states, and
 - Uncertainty characteristics



Composite Demand-Hydraulic Model

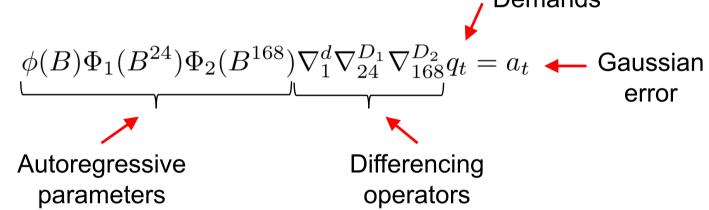
- Developed the first approach to integrate
 - A vectorized time-series model for demands with
 - A hydraulic solver (e.g., EPANET)



• Formulated as a Dynamic Bayesian Network

Demand Sub-Model: Vectorized Time Series Model

- Capable of implementing any ARIMA model structure
- Focused on auto-regressive (AR) single- or doubleseasonal models

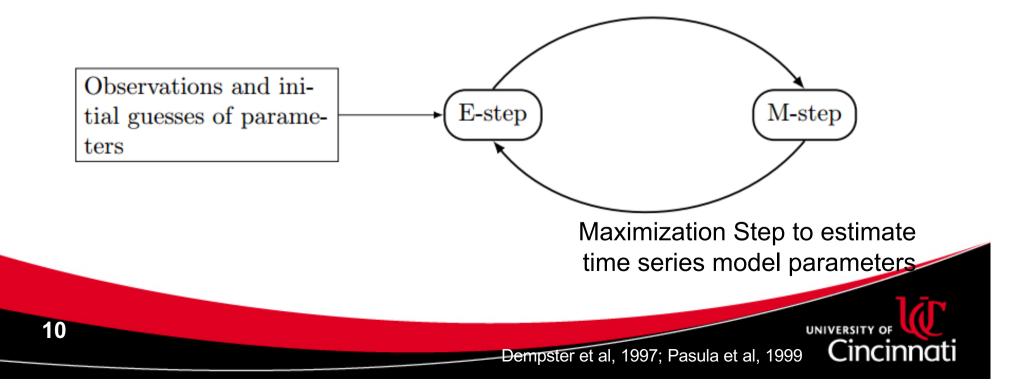


Challenge: How do we estimate the unobserved demands and VARIMA model parameters using limited observed hydraulics?

Parameter/Demand Estimation

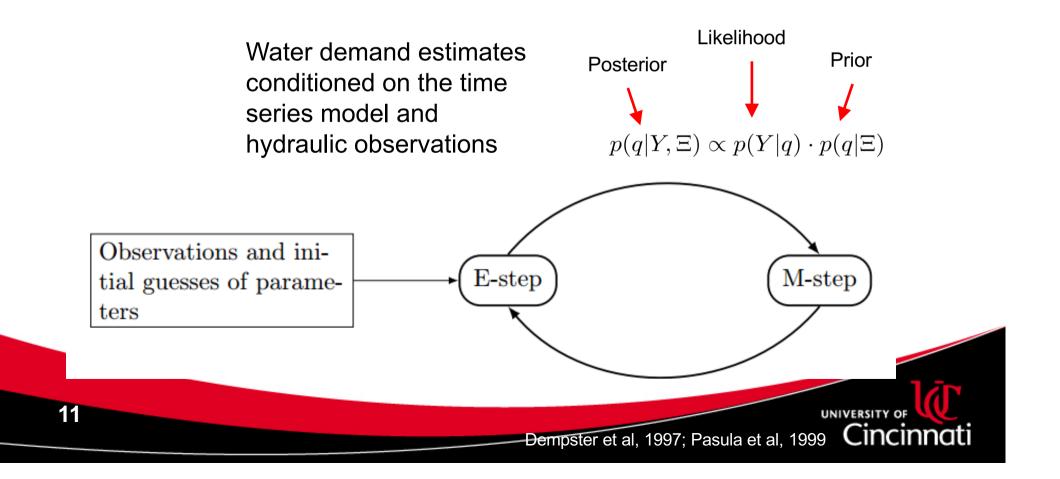
- Implemented an Expectation-Maximization (E-M) algorithm
 - An iterative approach used to estimate latent variables using observed data

Expectation Step to estimate demands



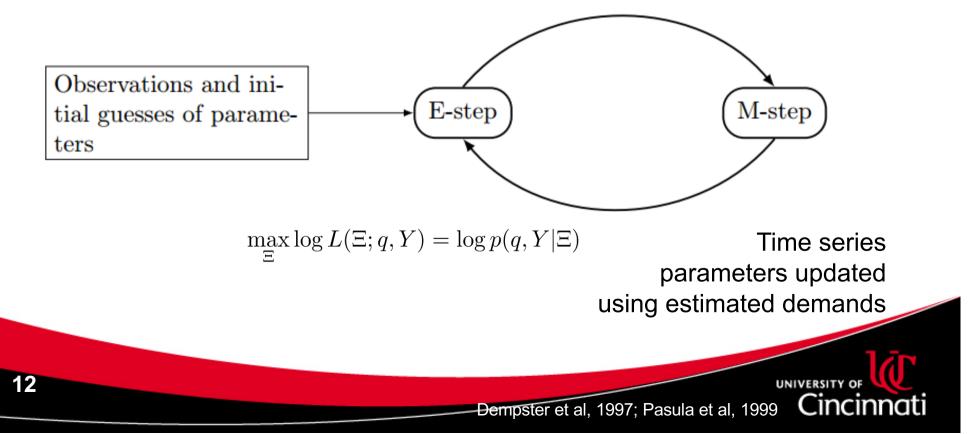
Expectation Step

• E-step: estimates water demands using a Markov chain Monte Carlo algorithm

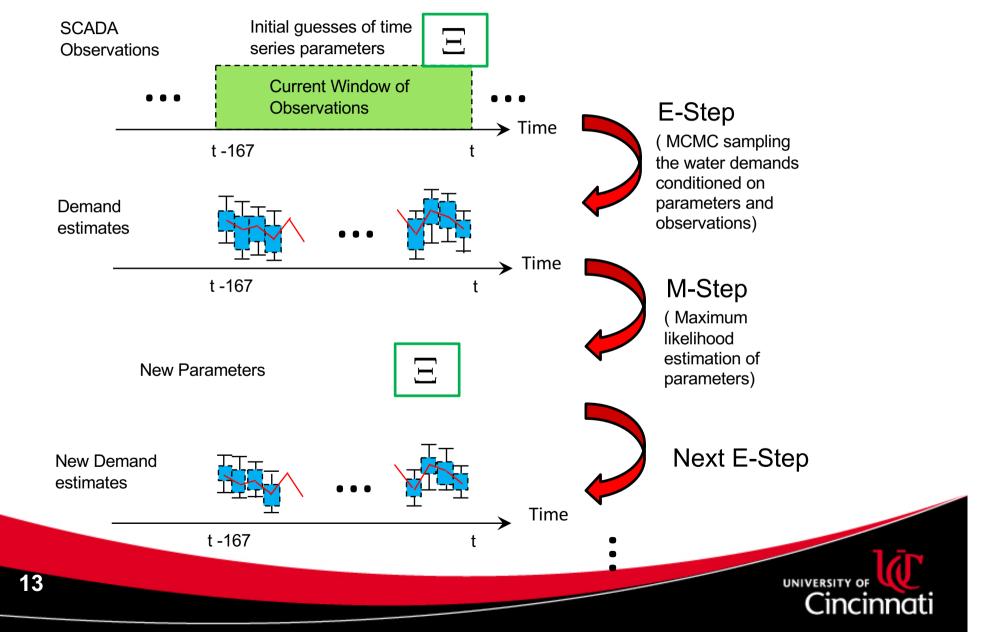


Maximization Step

 M-step: non-linear parameter estimation for the time series model by minimizing the mean squared error (equivalent to maximum likelihood estimates)



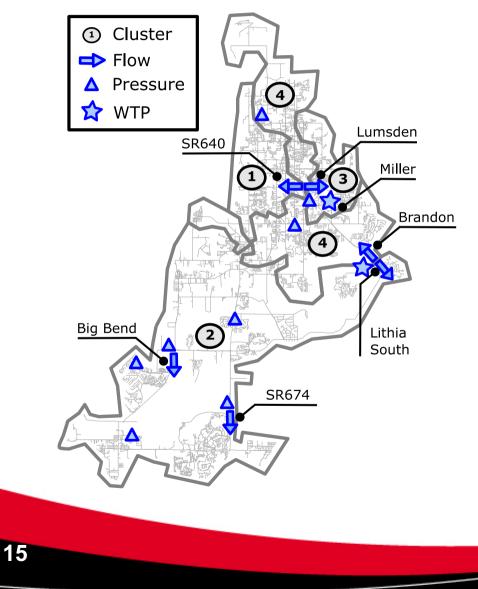
Graphical Concept



Real-World Network Study

- Applied the composite demand-hydraulic model to a real-world case study to
 - Evaluate the overall performance
 - Identify challenges associated with a realworld application
- Intent was to identify additional needs to improve the integrated demand-hydraulic modeling approach

Case Study

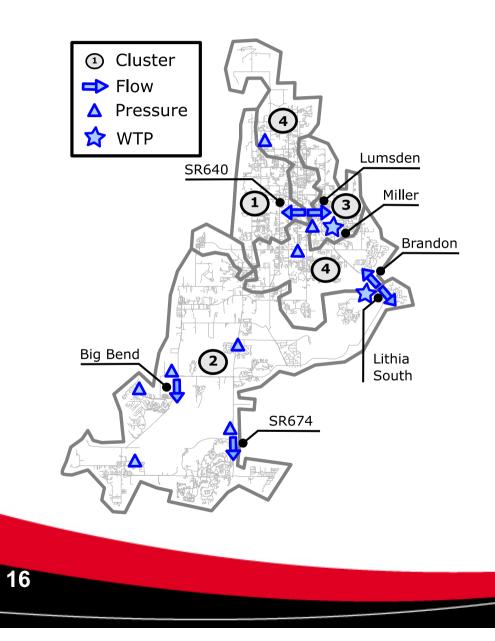


- Real-world system with
 - Main treatment plant (Brandon and Lithia South) 56 – 170 MLD [15- 45 MGD]
 - Secondary treatment plant (Miller) 16 MLD [4.3 MGD]
 - Two tanks
 - Six flow measurements
 - Nine pressure measurements
 - Network has ~60,000 service connections represented by ~12,000 nodes
- Clustering
 - To reduce parameterization network was clustered into four regions based on flow path downstream from flow meters [modified from Qin and Boccelli, 2016 (under review)]

UNIVERSITY OF

Cincinnati

Case Study



- Time Series Model
 - Preliminary model used two auto-regressive and one seasonal term (24-hr)
 - Same model structure, not parameters, applied to each cluster

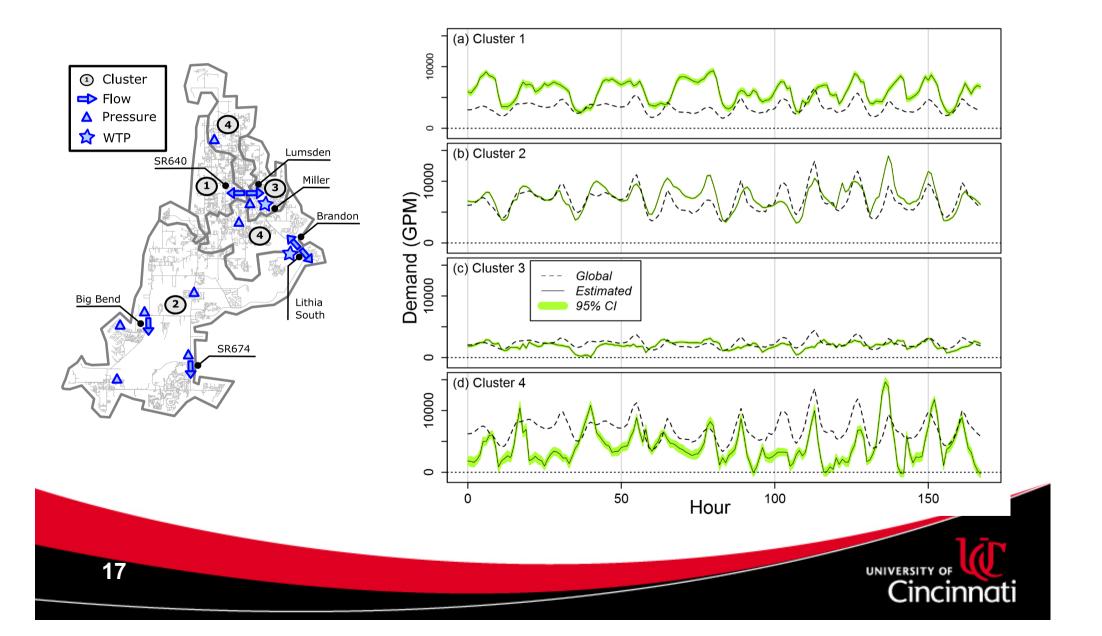
$$q_t = \phi_1 q_{t-1} + \phi_2 q_{t-2} + \phi_{24} q_{t-24} + \phi_1 \phi_{24} q_{t-25} + \phi_2 \phi_{24} q_{t-26} + a_t$$

- Performed demand estimation with 168-hours
- Forecasted demands for an additional 24 hours

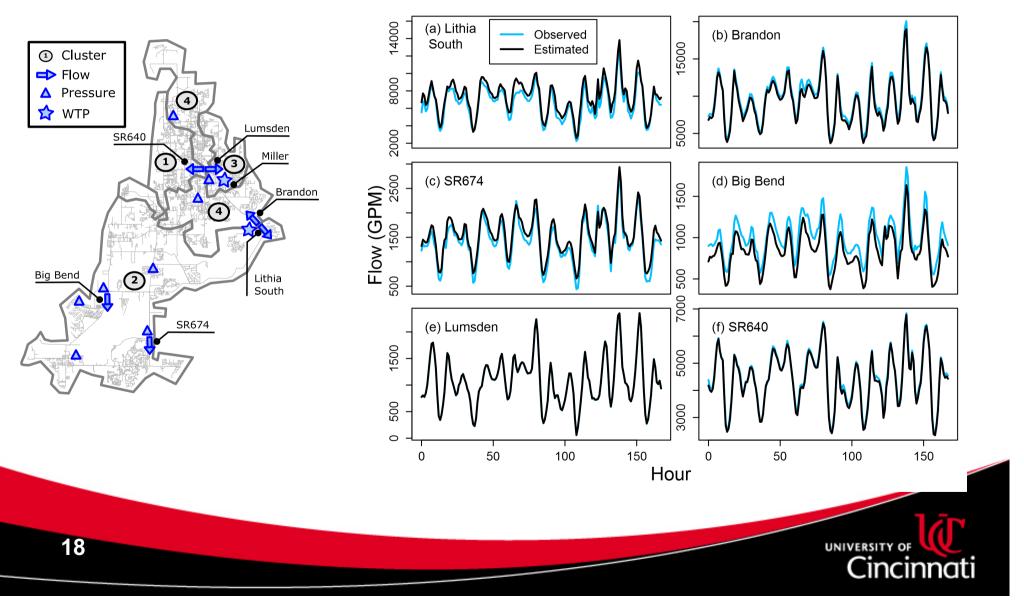
UNIVERSITY OF

Cincinnati

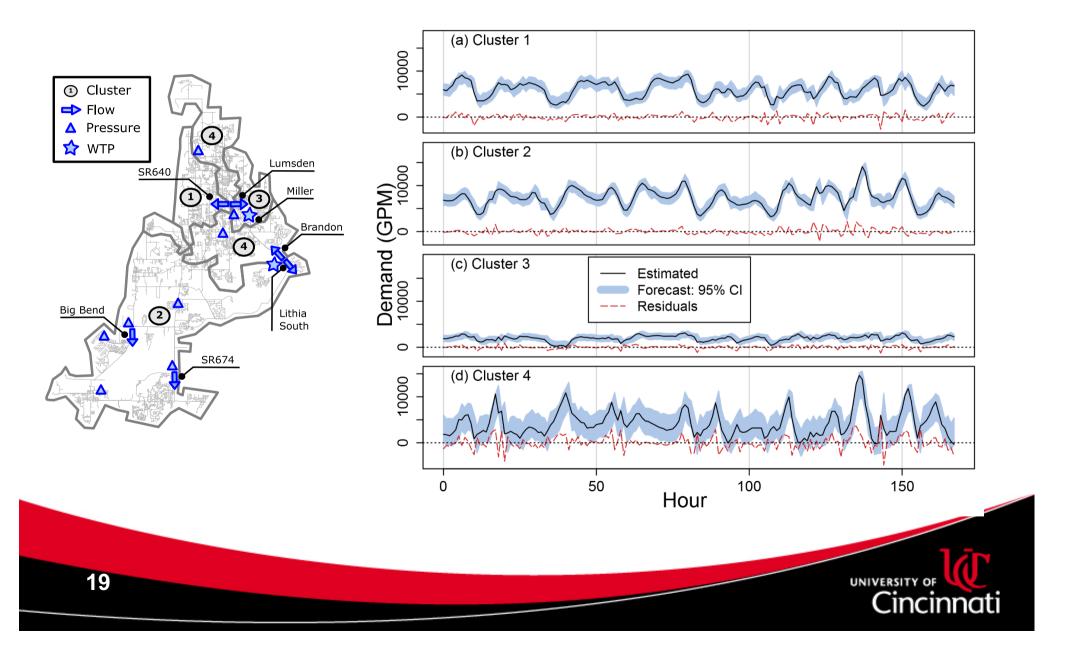
Results: Demand Estimates



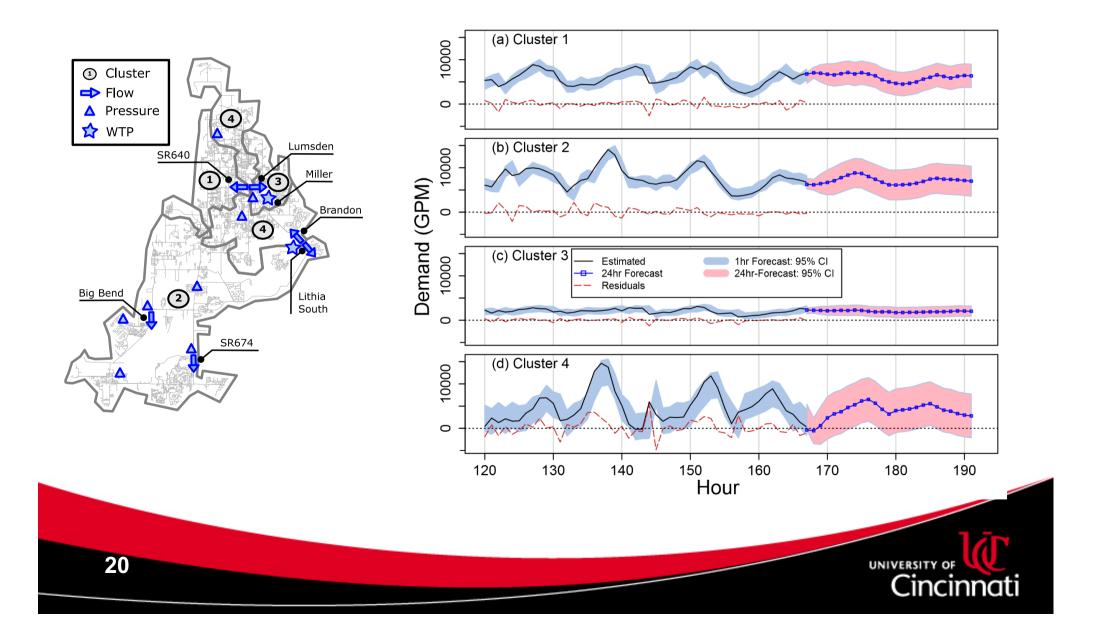
Results: Observed and Estimated Flows



Results: 1-hr Ahead Forecasts

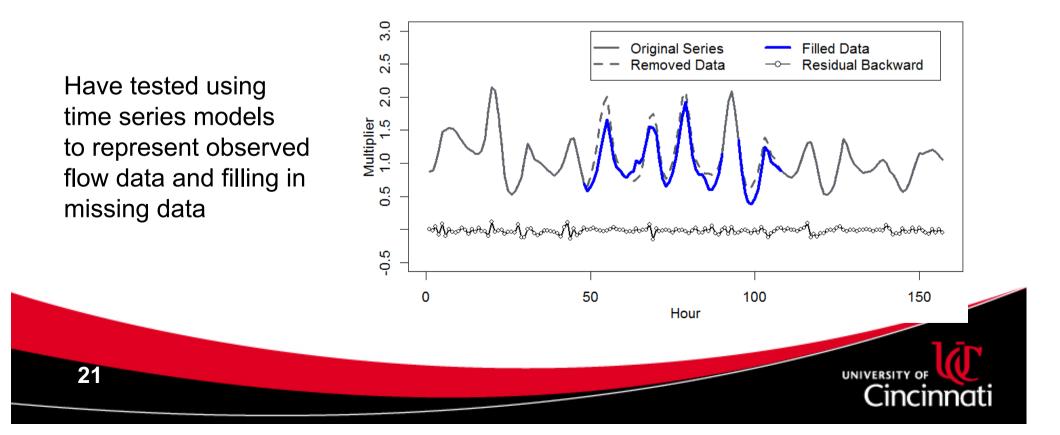


Results: 24-hr Forecasts



Lessons Learned: Missing Data

- One significant issue with SCADA data is incorrect and missing data
- Need approaches to identify and replace (or ignore) missing data when occurring



Lessons Learned: Clustering and Measurements

- The development of the clusters and/or location of the monitoring stations can effect the demand estimation process
- Observations [not shown] have demonstrated that for the same number of clusters, but using different approaches to cluster the network, can result in poor demand estimates
 - i.e., zero or negative demands

Lessons Learned: Physical Inacurracies

- Unknown/unobserved differences between reality and model representation
 - In particular, for this case study, there were significant challenges representing tank dynamics
 - Can adequately represent flows out of the tank through pumps, but typically overestimated the fill flow rate by 3 – 4 times the observed flow
 - Model was missing a pressure sustaining valve that physically existed

Summary and Conclusions

- This first real application of the composite demand-hydraulic model provided:
 - Good demand estimates and representation for observed hydraulics
 - Demand estimates routinely within the 1-hr ahead forecasting values
 - Long-term forecasting results in relatively large uncertainties
 - Implementation of a real-time model also requires significant investment into ensuring accurate representation of the physical system

Next/Future Steps

- Demand Estimation
 - Lognormal representation of the demands
 - Double seasonal times series models and additional model identification
- Demand Forecasting
 - Identifying model structures to improve forecasting not just estimation
 - Efficient approaches for forecasting demands and hydraulic states
- Real System Assessment
 - Work more closely with utility on physical representation
 - Comparison of performance with available tracer data to assess transport improvements

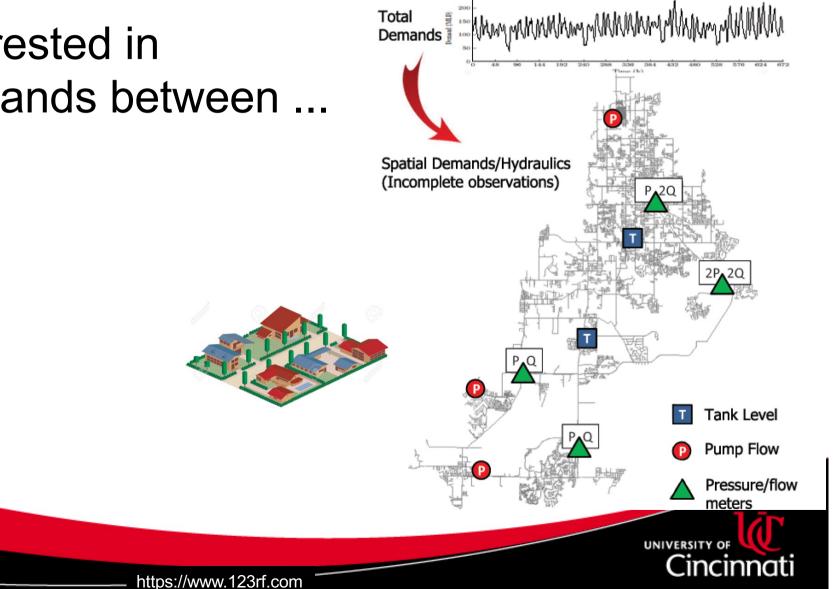
Acknowledgements

- Partial funding support from
 - National Science Foundation CMMI (#09000713)
 - Water Research Foundation (#04345)
 - National Science Foundation CBET (#1511959)
 - Ohio Water Resources Center (#60048647)
- Questions?

Scale of Interest

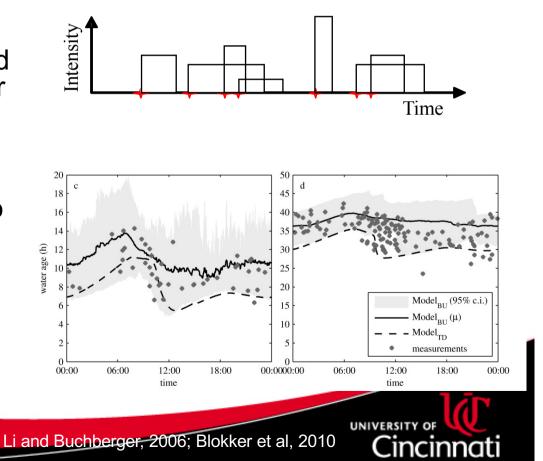
 Interested in demands between ...

28



Demand Modeling: Bottom-Up Approach

- Stochastic modeling of demands at individual service connections
 - Includes arrival rates, and distributions of intensity and duration of individual water usage
 - Blokker et al used demographic information to estimate demands
 - Data intensive, challenging to keep up the data set



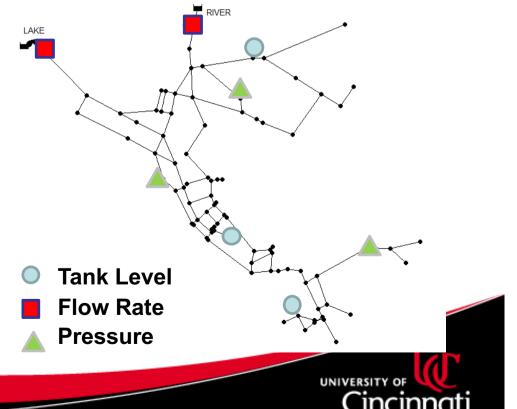
Demand Modeling: Top-Down Approach

- Deterministic modeling with temporal/spatial demands representing an average/extreme demand scenario
 - Typically performed as "calibration" to match observations
 - Real-time approaches have used extended Kalman filters to estimate the demands

Shang et al, 2006; Kang and Lansey, 2010

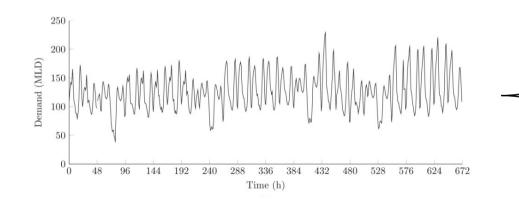
 Capture spatial distribution, but not temporal relationships

No predictive ability

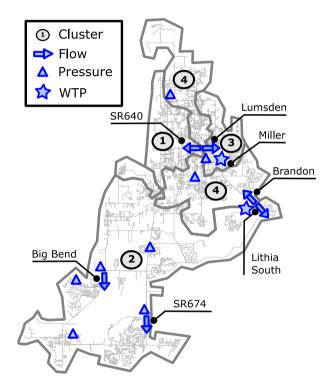


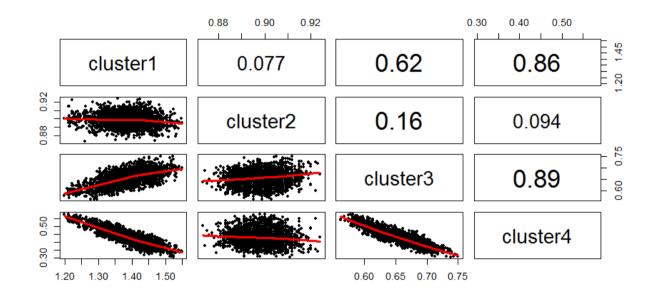
Demand Modeling: Temporal Correlations

- Time series modeling applied to observed system-wide (total) demands
 - No spatial distribution



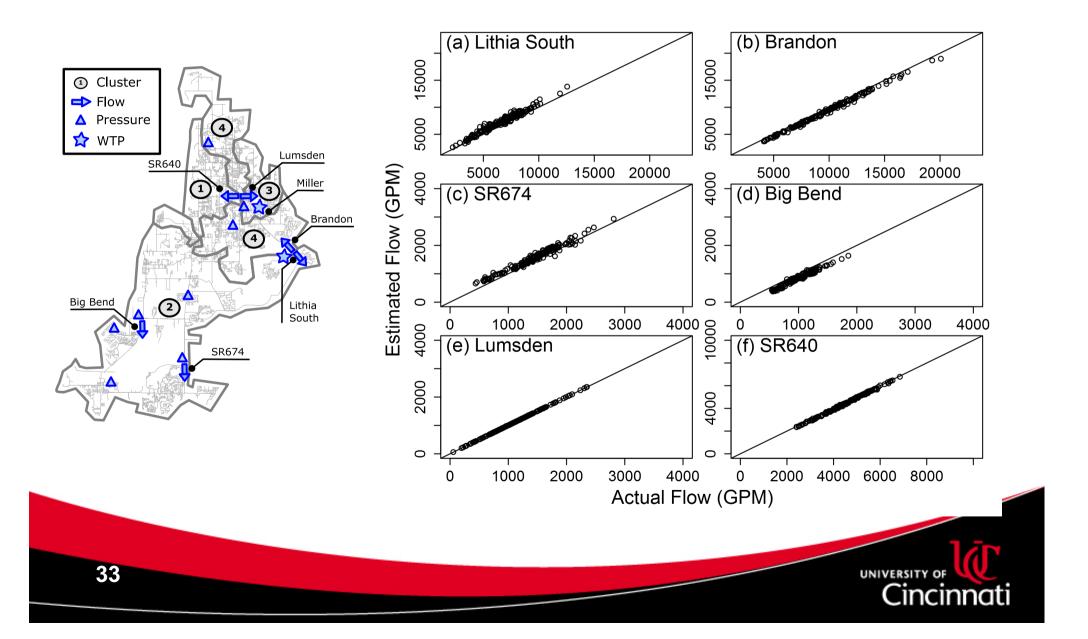
Results: Scatter Plots Demands





32

Results: Scatter Plots Flows



Real-Time Modeling

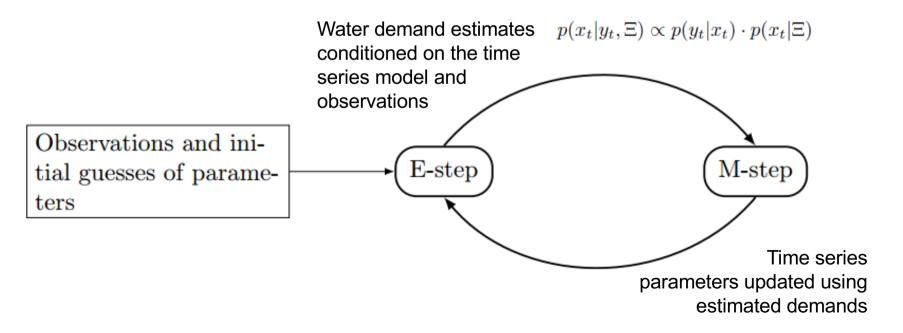
- Requires real-time demand estimates and forecasts
- Challenge: How to estimate and forecast demands using:
 - System-wide (total) demands
 - Monthly/quarterly billing data (i.e., base demands)
 - Spatially limited measurements of flow rates, pressures, tank levels at hourly (or shorter) time intervals
 - Potentially inaccurate model representations of the physical network

Parameter/Demand Estimation

- Implemented an Expectation-Maximization (E-M) algorithm
- The E-M algorithm is used to
 - Estimate latent variables
 - demands and time series parameters
 - Using observed data
 - i.e., flows, pressures

Parameter/Demand Estimation

- Implemented an Expectation-Maximization (E-M) algorithm
 - An iterative approach used to estimate latent variables using observed data



Expectation (E)-step

- Estimate the posterior distribution of demands using likelihood function using
 - Time series model as a prior, and
 - Observed data

$$p(q|Y, \Xi) \propto p(q, Y, \Xi) = p(Y|q, \Xi) \cdot p(q|\Xi) = p(Y|q) \cdot p(q|\Xi)$$

 q : demand esitmates
 Y : hydraulic observations
 Ξ : time series model parameters
Known with hydraulic
sub-model
Known with demand

 Use a Markov chain Monte Carlo estimation approach to estimate demands

q: Y

Maximization (M)-step

- Given the estimated demands
 - Estimate the parameters of the VARIMA demand model using mean squared error (equivalent to maximum likelihood estimates)

Using likelihood principle

$$\log L(\Xi; q, Y) = \log p(q, Y | \Xi)$$

 $= \log p(q|\Xi) + \log p(Y|q) + C$

q: demand esitmates

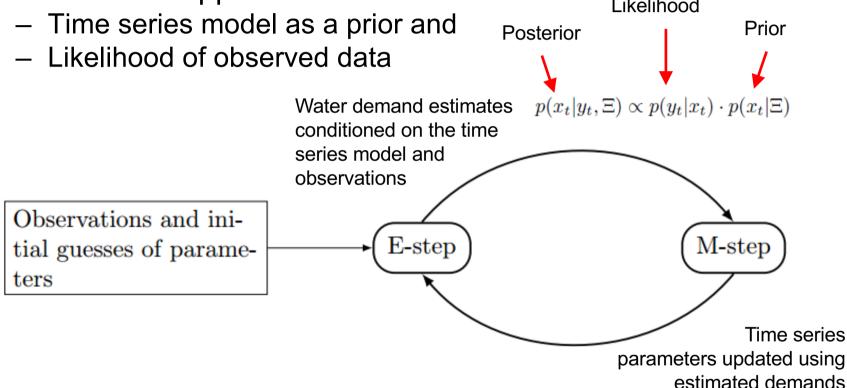
Y: hydraulic observations

 $\Xi:$ time series model parameters

Independent of Ξ ; estimated in E-step

E-M Algorithm

 E-step: estimates water demands using a Markov chain Monte Carlo approach with a



 M-step: estimates the parameters of the time series model by minimizing the mean squared error (equivalent to maximum likelihood estimates)

Demand Sub-Model: Vectorized Time Series Model

• Example: single-seasonal model

$$x_t - A_1 x_{t-1} - \dots - A_P x_{t-P} - \mu = a_t \\ \phi(B) \Phi_1(B^s) \nabla^d \nabla_s^{D_1} x_t = a_t$$
 $A(B) x_t = a_t$

 x_t is the vector of water demands at time t

Challenge: How do we estimate the unobserved demands and VARIMA model parameters using limited observed hydraulics?

covariance matrix Σ .

Real-Time Modeling

- Available information for demand estimation
 - System-wide (total) demands
 - Monthly/quarterly billing data
 - Demographic data associated with lot types, socio-economic information, etc.
 - Spatially limited measurements of flow rates, pressures, tank levels at hourly (or shorter) time intervals
- How do we use this data to estimate and forecast demands?

Outline

- Background
- Motivation
- A statistical demand-hydraulic model
- The Expectation-Maximization (E-M) algorithm
- Case study
- Results and discussions
- Future work

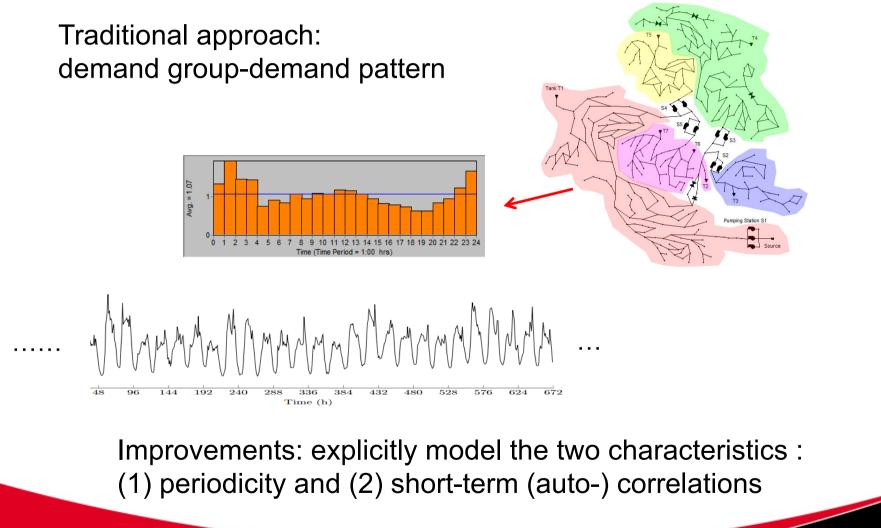
Introduction

- Water utilities must ensure potable water infrastructure are sustainable, robust and resilient to long- and short-term challenges
- Long-term challenges
 include
 - Climate change
 - Population shifts
 - Aging infrastructure
- Addressed through
 infrastructure design

Hydraulic model: framework

	Туре	Data	Data Source/Measurements
Inputs —	Network	Network connectivity, pipe diameters/roughness, tank geometries, etc. (Static during EPS)	GIS; Asset Management System (AMS)
	"Controls" →	On/off statuses of pumps/control valves, speed settings of VFPs, tank levels, etc.	Control rules or results from previous time steps (in EPS), historic actions are available in SCADA DB
	Demands	Short-term water demands for individual customers	Automatic Meter Reading (AMR) system; monthly water bills; empirical patterns
Outputs	Hydraulics	Nodal pressures, pipe/pump flows	SCADA system (however, typically only partial coverage for a network)
44			UNIVERSITY OF Cincinn

The models of water demands

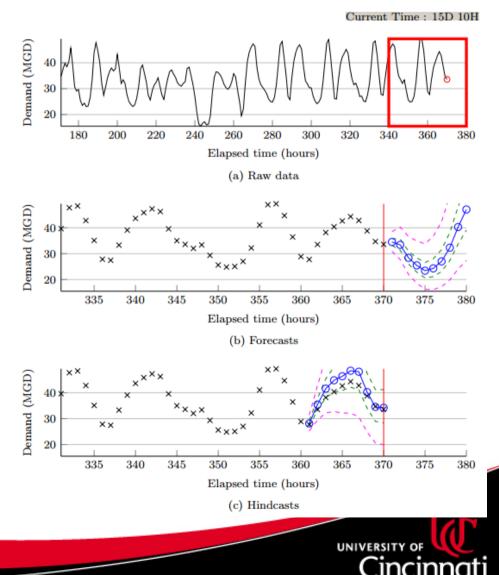


45

Benefits of using time series models

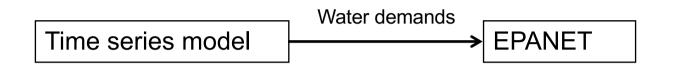
- Using seasonal (periodic) time series model is expected to improve the forecasts of systemwide demands (Chen and Boccelli, 2013)
- Forecasts are updated as real-time observations are received
- Varied forecasting horizons
- Quantification of uncertainties

Can we use (vector) time series model for spatially distributed demands?



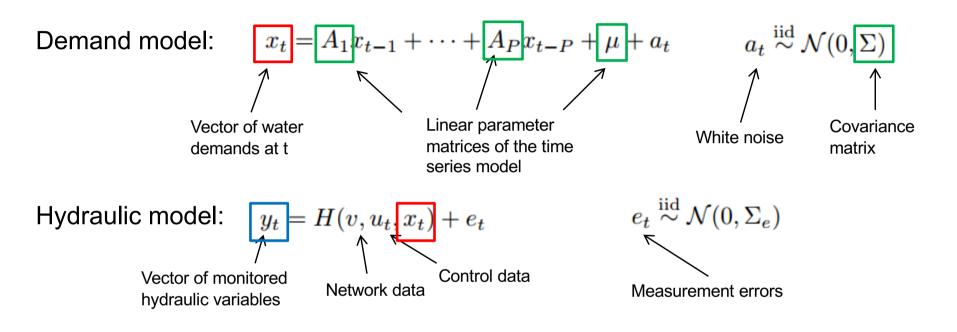
46

Motivation

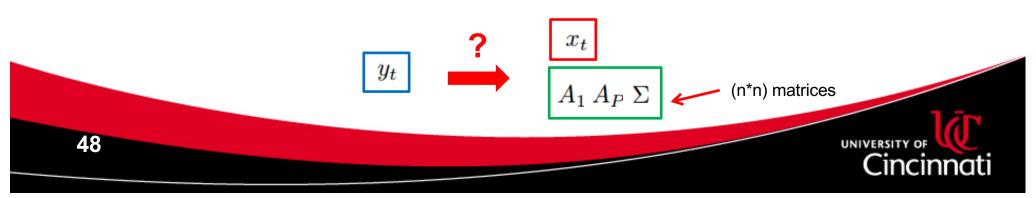


- We would like to use SCADA data to estimate the parameters of the (multivariate) time series model
 - Extension to the methodology for univariate water demands
- The composite model will have the capabilities provided by the time series model
 - Better online forecasting of demands and hydraulics
 - Uncertainty quantification

The demand-hydraulic model

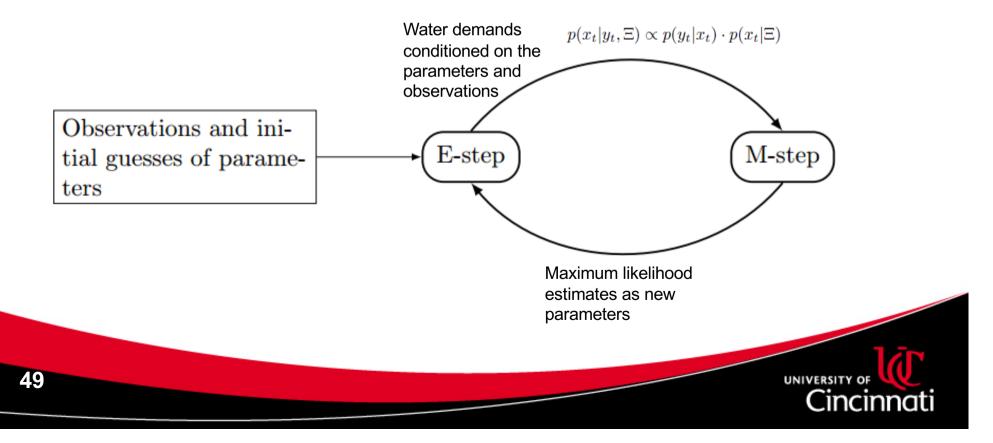


Our objective is to estimate water demands and model parameters given hydraulic observations

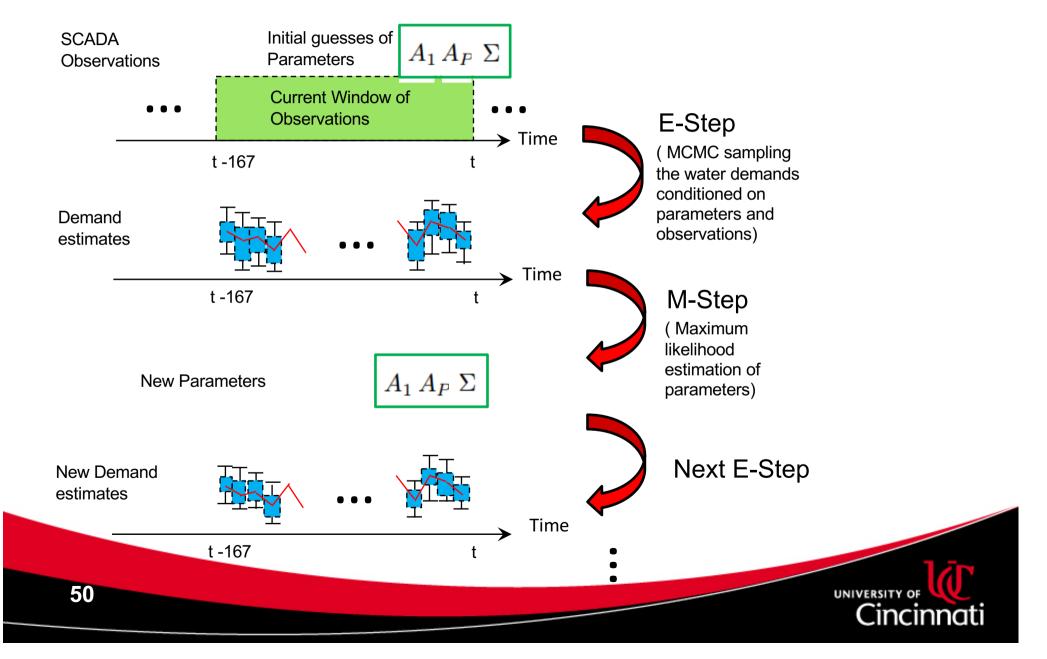


The EM algorithm (Pasula et.al., 1999)

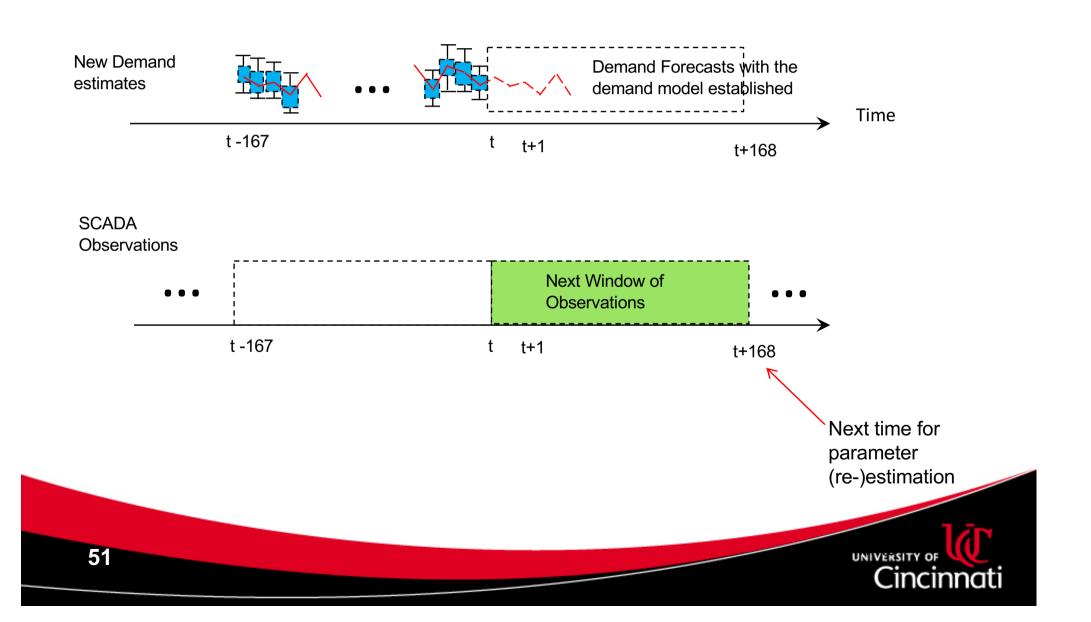
- Expectation-Maximization
- Iteratively update point estimates of parameters and distribution estimates of latent variables (demands)
- E-step: Markov chain Monte Carlo



Concept: E-M algorithm in demand estimation



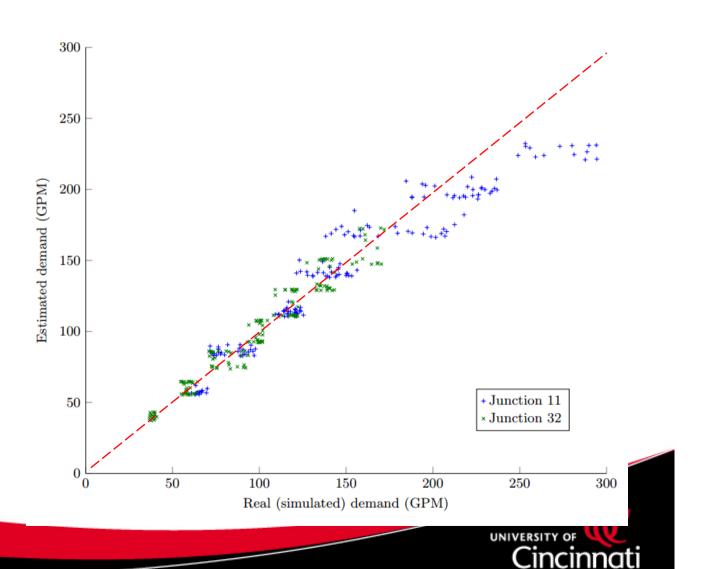
Concept: E-M algorithm in demand estimation



Demand estimates

Customer	R^2	MAPE*
Junc. 11	0.88	10.4%
Junc. 12	0.92	8.4%
Junc. 13	0.93	7.1%
Junc. 21	0.91	7.3%
Junc. 22	0.91	8.0%
Junc. 23	0.93	8.1%
Junc. 32	0.94	7.1%

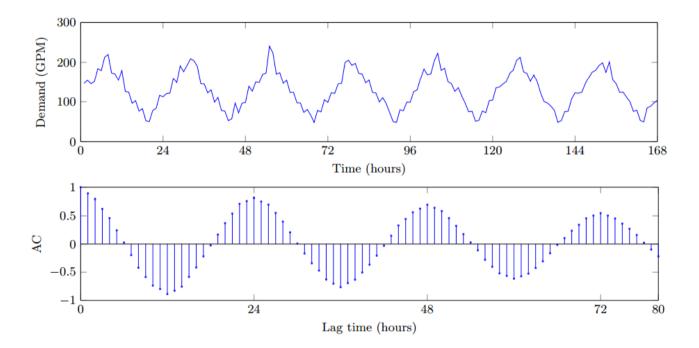
- Demand estimates showing good match for small-tomedium values
- Underestimated the high demands for Junc. 11



Temporal correlations of demand estimates

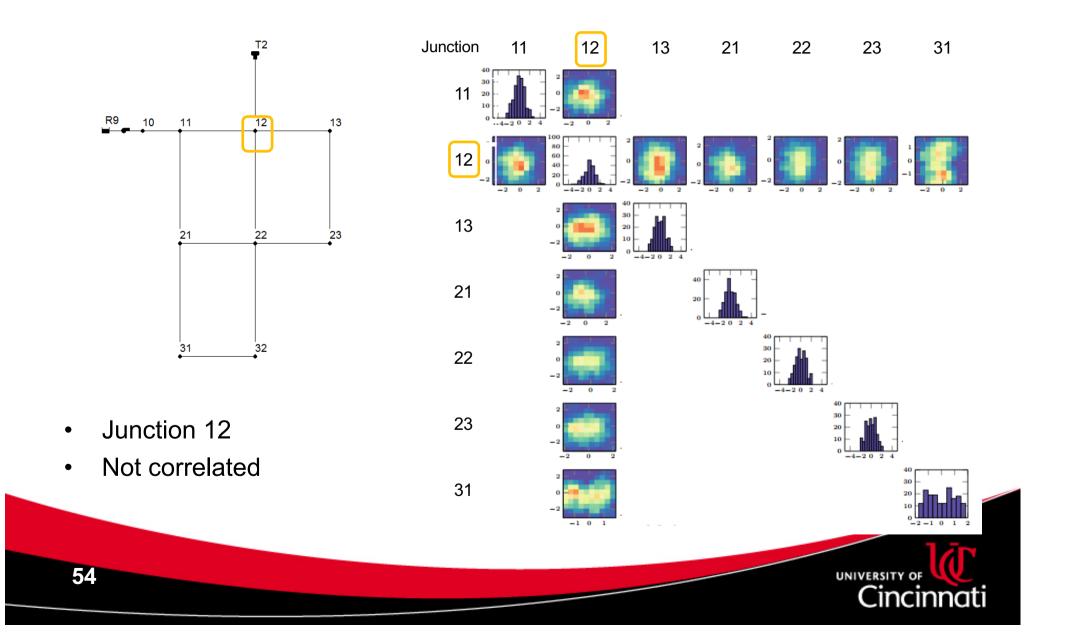
• Junction 11 water demands and autocorrelations

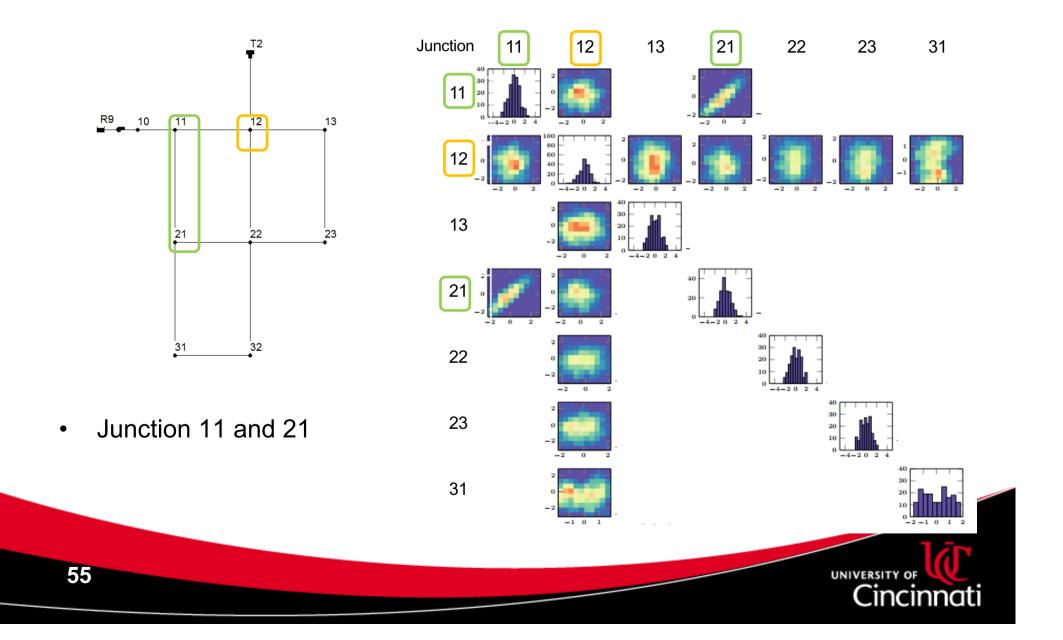
53

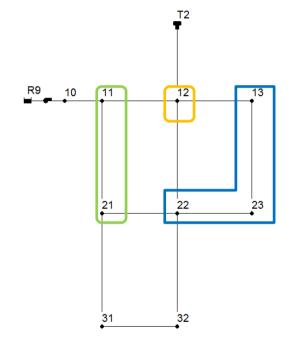


 Structure of autocorrelations similar to previous results on univariate water demands

UNIVERSITY O

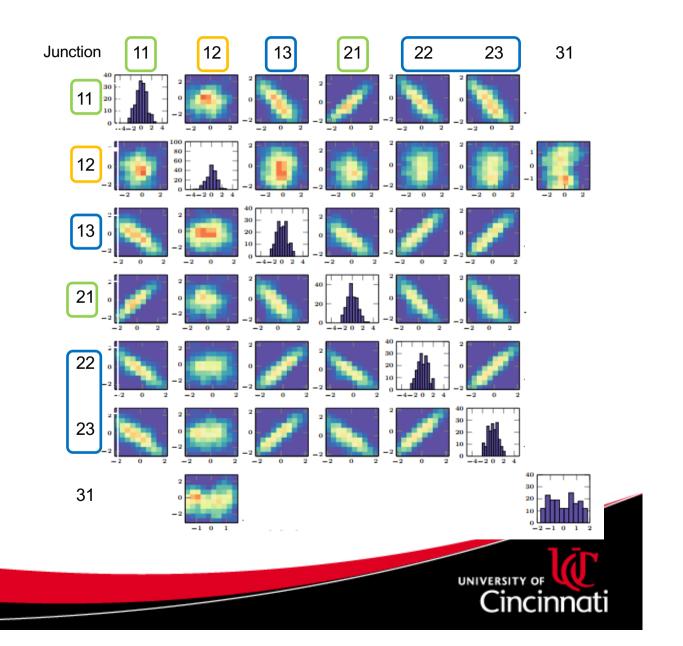


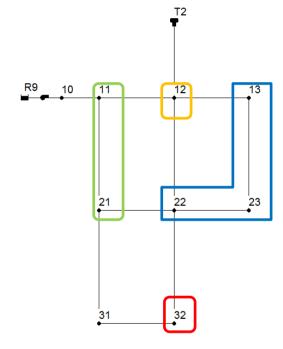




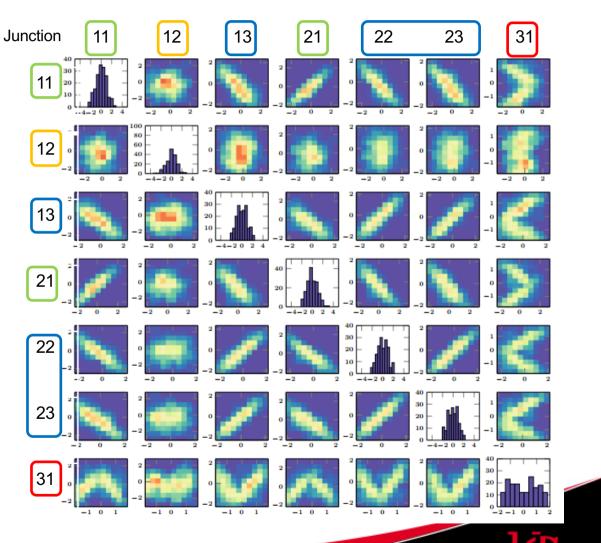
• Junction 13, 22, and 23

56





 Combinational results of intrinsic uncertainty of demands and the layout of SCADA sensors



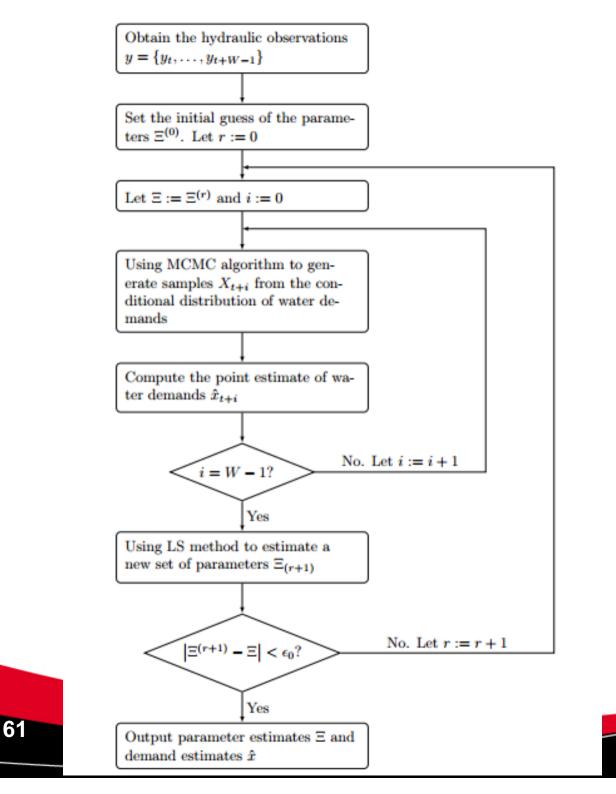
Conclusions

- The EM algorithm is effective in estimating the parameters and demands in a proof-of-concept study case
- Spatial and temporal correlations of water demands can be quantified
- Lots of computational resources consumed
 - 60-80 minutes to assimilate 1-week worth of SCADA data
 - Applicable for small network
 - Large network may need simplification/consumer grouping

Future work

- Use the demand model with estimated parameters for short-term forecasting
 - Prediction of demands and hydraulics
- Investigate the impact of different layouts of SCADA sensors to the uncertainty of demand estimates
- Potential new method of customer grouping based on spatial correlations
- EM algorithm may be applicable in other problems with the "time series model + non-linear model" structure

Thanks!



Flowchart of the EM algorithm

